1

Xuelian Li, Jyh-Horng Lin (2019)

How does shadow banking wealth management product affect bank performance under government capital injection?

XUELIAN LI

SCHOOL OF ECONOMICS, SOUTHWESTERN UNIVERSITY OF FINANCE AND ECONOMICS; COLLABORATIVE INNOVATION CENTER OF FINANCIAL SECURITY

1. Introduction

Background: Why the shadow banking activities involved by banks?

- The ratio of shadow banking to commercial banks' total financial assets was rising from approximately 52% in 1990s to 200% in 2007. (Panetti , 2014)
- The collapse of shadow banking in 2007 to 2008 played a critical role in undermining the regulated banking sector, and in bringing about the financial crisis(Gennaioli et al. 2013).
- Offer rate of return well above regulated deposit interest rate and are often used to fund investments in sectors where bank credit is restricted (Plantin, 2015).

• Financial institutions received a government aggregate infusion of \$125 billion on

October 14, 2008 (Bayazitova and Shivdasani, 2012).

- Capital enhances a bank's survival probability (Allen et al, 2011).
- A growing body of literature examines capital affecting bank performance during a financial crisis. Our study focuses on one related issue: bank efficiency gain/loss from shadow banking activities and bankruptcy prediction under government capital injections.

There are at least two reasons where a thorough understanding of WMPs is essential.

• Actively managed by banks, a part of the shadow banking system in

China, few are recorded on banks' balance sheets.

• Issuance of Chinese WMPs has grown rapidly in recent years, around 17-19% . it does represent a part of the shadow bank activities that have been particularly important at some point in time (Perry and Weltewitz, 2015).

Bank performance

Two key issues that concern bank managers:

- Bank interest margin, as a proxy for the efficiency (Saunders and Schumacher, 2000).
- **Bank survival** related to **default risk** is central for banks and regulators in banking stability (Berger and Bouwman, 2013)

Purpose of the paper

We develops a contingent claim model to examine how shadow banking wealth management products (WMPs) affect a bank's performance (efficiency, default risk) under government capital injection.

Contributions to the literature

- 1) the growing literature linking bank interest margin and WMPs, particularly a deeper justification about the collapse of shadow banking in 2007 to 2008.
- 2) an alternative explanation of deteriorating bank interest margins by focusing on WMPs .
- 3) an alternative explanation of the viewpoint from Pozsar et al., 2013.

(the link between the regular banking and the shadow banking may create higher contagion and systemic risks, which in turn may affect banking stability.)

Framework of paper

8

- Section 1: introduction
- Section 2: literature review
- Section 3: basic structure of the proposed model
- Section 4: derives model solution and comparative static analysis
- Section 5: numerical analysis
- Section 6: conclusion

2. Related literature: three related strands

• 1) regular banks with shadow banking activities:

Pozsar et al. (2013): features of shadow banks, economic roles, relation to traditional banks.

Jeffers and Baicu (2013): interconnections between affect the stability of the financial system.

Li and Lin (2016): bank interest margin management when the bank conducts regular

lending and shadow-banking entrusted lending activities under capital regulation.

Our focus: bank interest margin management aspects of shadow-banking WMPs

¹⁰ 2. Related literature: three related strands

- 2) interest margin:
- #Wong (1997): is positively related to the bank's market power, credit risk, and interest rate risk.
- #While Williams (2007): negative relationship between credit risk and bank interest margin.
- #Hawtrey and Liang (2008): negative impact of managerial efficiency on bank interest margins.
- #Ewijk (2012): an explanation for the decline in bank interest margins in many developed countries.
- <u>Our focus:</u> effects of shadow banking activities on bank interest margin under government capital injection that these papers are silent on.

¹ 2. Related literature: three related strands

- 3) government capital injection:
- #Bayazitova and Shivdasani (2012): less stable funding mixes more likely receive government capital infusions.
- # Chang and Chen (2016): interactions between government capital injections and credit risk transfers.
- # Chen and Lin (2016) :impacts on bank interest margin, bank default risk, and borrower default risk from government's capital injection.
- <u>Our focus:</u> commingling of regular banking with shadow banking under government capital injection, and in particular, the emphasis we put on the interconnections between the two systems in the context of bank interest margin management.

12 3. Model framework

Our model proceeds in the following main **assumptions** to capture all the real-life dimensions of bank valuation and regulation:

- Except the loan market faced by the bank, perfectly competitive markets are assumed for all financial assets.
- Financial markets are assumed to be complete.
- Investors and regulators are risk-neutral
- The Federal Deposit Insurance Corporation (FDIC) plays both the roles of insurer and receiver for administering and resolving failing banks.
- We only focus on direct government capital injection

13 3. Model framework

- a. Equity valuation
- b. Efficiency gain from shadow banking
- c. Default risk

Assets		Liabilities	
Balance-sheet activities:			
Loan	L	deposit	D
liquid asset	В	government equity	
-		capital injection	heta K
		equity	K
Shadow banking activities:			<i>θK</i> <i>K</i>
risky asset	αW	wealth management	
liquid asset	$(1-\alpha)W$	product	W

15

Consider a bank that makes decisions in a single period horizon with two dates, 0and 1,t €h[€Ob]]nk, athas theQfollowing balance sheet:

 $whe Fre + B = D + K + \Theta K$

(1)

risky loans liquid assets deposits L: government capRal injections D: θ K:

16

- The bank's loans mature at t = 1.
- Equity capital with government capital injections (1 + θ) h ld by the bank is tied by regulation to be fixed proportion of its deposits

 $(1 + \theta) K \ge \emptyset$ (Wong, 1997).

when the capital constraints binding, Eq.(1) can be expressed as

 $L + B = (1 + \theta)K (1 / q + 1)$

In addition to balance-sheet activities, at $t \pm h \Theta$, bank also holds an amount of WMPs W > 0

17 3. 1 Equity valuation $(1+\theta)K = L + B + \alpha W + (1-\alpha)W - D - W$ (2)

 $L = L(R_{T})$ where

> α Wrisky assets in WMPs koan rate chosen by bank WWMPs

This paper takes a path-dependent barrier option approach to the market valuation of equity in a bank.

The default can occur at any time before the maturity date. Bank equity can be priced as a downand-out call (DOC) option.

When the value of the bank's assets is less than the strike price, the value of the bank's equity is zero.

The market value of the bank's underlying assets follows a geometric Brownian motion of the form :

 $dV = \mu V dt + \sigma V dM \tag{3}$

where

 $V = (1 + R_L)L + \alpha (1 + R_W)W$

V: the value of the asset portfolio R_W : constant market rate of WMPs return

The market value of the bank's equity S:

$$S = SC - DIC \tag{4}$$

where $SC = VN(d_1) - Ze^{-\delta} N(d_2)$, as the market value of the bank's assets and present value of the net-obligation payments using the standard call option view of the bank.
$$\begin{split} DIC = V(\frac{H}{V})^{2\eta} N(a_1) - Ze^{-\delta}(\frac{H}{V})^{2\eta-2} N(a_2), \text{ down-and-in call activated only if the barrier is breached.} \\ H = \beta Z & \beta \\ \vdots \text{ the knock-out value of the bank.} \quad \beta \\ \text{ is the barrier-to-debt ratio, and} \quad N(\cdot) &= \\ \text{ the standard normal} \end{split}$$
cumulative distribution function.

3.2 Efficiency gain from shadow banking activities

• variance of the bank return(Ronn and Verma 1986):

$$\sigma_{S} = \frac{\partial S}{\partial V} \frac{V}{S} \sigma \tag{5}$$

• efficiency gain from WMPs can be measured by the R_{I}^{P} differential (Ergungor, 2005):

$$\Delta RV = RW(WW) - RV(OW) \tag{6}$$

where

$$RV(WW) = \frac{S(W > 0)}{\sigma_s(W > 0)}$$

 $RV(OW) = \frac{S(W = 0)}{\sigma_s(W = 0)}$

 $\Delta \mathbb{R} > 0$ can be explained as efficiency gain from involving the shadow banking activities, whereas can be explained as deficiency.

21 3. 3 Default risk

• The **D** framework offers a very useful measure for predicting bankruptcy.

• probability of default (risk-neutral):

$$P_{s} = N(h_{1}) + e^{h_{2}}(1 - N(h_{3}))$$
(7)

where

$$h_1 = \frac{1}{\sigma} \left(\ln \frac{\beta Z}{V} - \delta + \frac{\sigma^2}{2} \right)$$
$$h_2 = \frac{2}{\sigma^2} \left(\delta - \frac{\sigma^2}{2} \right) \ln \frac{\beta Z}{V}$$
$$h_3 = -\frac{1}{\sigma} \left(\ln \frac{\beta Z}{V} + \delta - \frac{\sigma^2}{2} \right)$$

22 3. 3 Default risk

• It is important to note that we use our measure of default risk to examine the relation between default risk and equity returns rather than price.

234. Solution and result

The first-order condition for the equity maximization are:

$$\frac{\partial S}{\partial R_L} = \frac{\partial SC}{\partial R_L} - \frac{\partial DIC}{\partial R_L} = 0 \tag{8}$$

Eq.(8) determines the optimal loan rate, thus the optimal bank **interest margin**, proxy **efficiency** of the banking intermediation

4.1 Increases in **risky investment** from WMPs funding :

$\frac{\partial R_L}{\partial \alpha} = -\frac{\partial^2 S}{\partial R_L \partial \alpha} / \frac{\partial^2 S}{\partial R_L}$	(9)
$\frac{dP_{S}}{d\alpha} = \frac{\partial P_{S}}{\partial \alpha} + \frac{\partial P_{S}}{\partial R_{L}} \frac{\partial R_{L}}{\partial \alpha}$	(10

4.2 Increases in WMPs

$$\frac{\partial R_{L}}{\partial W} = -\frac{\partial^{2}S}{\partial R_{L}\partial W} / \frac{\partial^{2}S}{\partial R_{L}^{2}}$$
(11)
$$\frac{\partial \Delta RV}{\partial W} = \frac{\partial \Delta RV}{\partial W} + \frac{\partial \Delta RV}{\partial R_{L}} \frac{\partial R_{L}}{\partial W}$$
(12)
$$\frac{\partial P_{S}}{\partial W} = \frac{\partial P_{S}}{\partial W} + \frac{\partial P_{S}}{\partial R_{L}} \frac{\partial R_{L}}{\partial W}$$
(13)

264.3 Increases in government capital injection

$$\frac{\partial R_L}{\partial \theta} = -\frac{\partial^2 S}{\partial R_L \partial \theta} / \frac{\partial^2 S}{\partial R_L^2}$$
$$\frac{\partial P_S}{\partial \theta} = \frac{\partial P_S}{\partial \theta} + \frac{\partial P}{\partial R_L} \frac{\partial R_L}{\partial \theta}$$

(14)

(15)

27 **5. Numerical results**

	$(R_{L} (\%), L)$						
α	(4.50, 200)	(4.60, 199)	(4.70, 197)	(4.80, 194)	(4.90, 190)	(5.00, 185)	(5.10, 179)
	$DIC(10^{-6})$						
0.30	3.9776	3.8626	3.6996	3.4925	3.2459	2.9652	2.6563
0.32	4.0105	3.8950	3.7313	3.5234	3.2759	2.9939	2.6836
0.34	4.0436	3.9275	3.7632	3.5545	3.3059	3.0227	2.7110
0.36	4.0767	3.9602	3.7952	3.5856	3.3360	3.0517	2.7386
0.38	4.1100	3.9929	3.8273	3.6169	3.3663	3.0808	2.7663
0.40	4.1433	4.0258	3.8595	3.6483	3.3967	3.1100	2.7941
0.42	4.1768	4.0587	3.8918	3.6797	3.4272	3.1393	2.8221
	S = SC - DIC	·					
0.30	38.0025	38.0140	37.8954	37.6454	37.2625	36.7459	36.0947
0.32	38.0772	38.0887	37.9700	37.7197	37.3366	36.8197	36.1682
0.34	38.1520	38.1634	38.0445	37.7941	37.4108	36.8935	36.2417
0.36	38.2269	38.2381	38.1191	37.8685	37.4849	36.9674	36.3153
0.38	38.3017	38.3128	38.1937	37.9429	37.5591	37.0414	36.3888
0.40	38.3766	38.3876	38.2684	38.0174	37.6334	37.1153	36.4624
0.42	38.4515	38.4624	38.3430	38.0918	37.7076	37.1893	36.5361
	$\partial R_L / \partial \alpha \ (10^{-1})$	³)					
0.30→0.32	-	-3.9719	-5.3715	-6.9023	-8.6468	-10.7130	-
0.32→0.34	-	-3.9446	-5.3311	-6.8469	-8.5736	-10.6180	-
0.34→0.36	-	-3.9176	-5.2911	-6.7923	-8.5013	-10.5230	-
0.36→0.38	-	-3.8908	-5.2516	-6.7382	-8.4298	-10.4300	-
0.38→0.40	-	-3.8643	-5.2125	-6.6847	-8.3592	-10.3380	-
0.40→0.42	-	-3.8381	-5.1738	-6.6319	-8.2893	-10.2470	-
Notes: Unless	s otherwise ind	icated, $R = 3$	$.50\%$, $R_{\rm D} = 2$	$2.50\%, R_{\rm rrr} =$	$4.00\%, R_{\rm p} =$	3.00%, W = 3	30, K = 15,

Result 1. An increase in bank investment funded by the shadow banking WMPs leads to increase bank loan portfolio at a reduced margin.

	$(R_{L} (\%), L)$)					
α	(4.50, 200)	(4.60, 199)	(4.70, 197)	(4.80, 194)	(4.90, 190)	(5.00, 185)	(5.10, 179)
	$P_{S}(10^{-2})$						
0.30	1.0805	1.0664	1.0476	1.0241	0.9958	0.9623	0.9233
0.32	1.0835	1.0694	1.0507	1.0272	0.9990	0.9656	0.9267
0.34	1.0865	1.0725	1.0538	1.0304	1.0021	0.9688	0.9301
0.36	1.0895	1.0755	1.0568	1.0335	1.0053	0.9721	0.9335
0.38	1.0925	1.0785	1.0598	1.0366	1.0085	0.9754	0.9369
0.40	1.0955	1.0815	1.0629	1.0396	1.0116	0.9786	0.9402
0.42	1.0984	1.0844	1.0659	1.0427	1.0148	0.9819	0.9436
	$dP_s / d\alpha$: to	tal effect (10 ⁻³)				
0.30→0.32	-	1.5218	1.5455	1.5796	1.6251	1.6833	-
0.32→0.34	-	1.5165	1.5400	1.5740	1.6193	1.6772	-
0.34→0.36	-	1.5111	1.5346	1.5684	1.6135	1.6712	-
0.36→0.38	-	1.5058	1.5292	1.5629	1.6078	1.6652	-
0.38→0.40	-	1.5005	1.5238	1.5574	1.6021	1.6592	-
0.40→0.42	-	1.4953	1.5185	1.5519	1.5964	1.6532	-
Notes: Unless	otherwise ind	icated, $R = 3$	$.50\%$, $R_{\rm D} = 2$	$.50\%, R_{\rm W} = 4$	$.00\%, R_{\rm P} = 3$.00%, W = 30	K = 15,

28

Result 2. An increase in the bank investment funded by the shadow banking WMPs increases the default risk in the bank's equity returns.

0, 200) (4	4.60, 199)	(4.70, 107)				
		(4.70, 197)	(4.80, 194)	(4.90, 190)	(5.00, 185)	(5.10, 179)
8.0025	38.0140	37.8954	37.6454	37.2625	36.7459	36.0947
8.0831	38.0945	37.9759	37.7256	37.3426	36.8257	36.1742
8.1637	38.1751	38.0563	37.8059	37.4226	36.9055	36.2538
8.2443	38.2556	38.1367	37.8862	37.5027	36.9854	36.3333
8.3250	38.3362	38.2172	37.9665	37.5829	37.0653	36.4129
8.4057	38.4168	38.2977	38.0468	37.6630	37.1452	36.4925
8.4864	38.4974	38.3781	38.1272	37.7432	37.2251	36.5722
$/\partial W(10^{-5})$						
	-3.2916	-4.4658	-5.7616	-7.2524	-9.0351	-
-	-3.2696	-4.4336	-5.7175	-7.1939	-8.9584	-
-	-3.2478	-4.4016	-5.6739	-7.1361	-8.8826	-
-	-3.2263	-4.3700	-5.6308	-7.0790	-8.8077	-
- 1	-3.2049	-4.3388	-5.5881	-7.0225	-8.7337	-
-	-3.1838	-4 3078	-5 5459	-6 9667	-8 6606	_
	8.0831 8.1637 8.2443 8.3250 8.4057 8.4864 /∂W(10 ⁻⁵) - -	8.0831 38.0945 8.1637 38.1751 8.2443 38.2556 8.3250 38.3362 8.4057 38.4168 8.4864 38.4974 $/\partial W(10^{-5})$ 3.2916 3.2696 3.2478 3.2049 3.2049 3.2049 3.2049 	8.0831 38.0945 37.9759 8.1637 38.1751 38.0563 8.2443 38.2556 38.1367 8.3250 38.3362 38.2172 8.4057 38.4168 38.2977 8.4864 38.4974 38.3781 $/\partial W(10^{-5})$ 	8.0831 38.0945 37.9759 37.7256 8.1637 38.1751 38.0563 37.8059 8.2443 38.2556 38.1367 37.8862 8.3250 38.3362 38.2172 37.9665 8.4057 38.4168 38.2977 38.0468 8.4864 38.4974 38.3781 38.1272 $/\partial W(10^{-5})$ 3.2916-4.46583.2696-4.43363.2478-4.40163.2263-4.37003.2049-4.33883.2049-4.3078-	8.0831 38.0945 37.9759 37.7256 37.3426 8.1637 38.1751 38.0563 37.8059 37.4226 8.2443 38.2556 38.1367 37.8862 37.5027 8.3250 38.3362 38.2172 37.9665 37.5829 8.4057 38.4168 38.2977 38.0468 37.6630 8.4864 38.4974 38.3781 38.1272 37.7432 $/\partial W(10^{-5})$ -3.2916 3.2696 -4.4658 - -5.7616 -3.2696 - -4.4016 - -5.6739 -3.2263 - -4.3700 - -5.6308 - 7.0790 -3.2049 - -4.3388 - -5.5881 - -7.0225 -3.1838 -4.3078 - -5.5459 - -6.9667	8.0831 38.0945 37.9759 37.7256 37.3426 36.8257 8.1637 38.1751 38.0563 37.8059 37.4226 36.9055 8.2443 38.2556 38.1367 37.8862 37.5027 36.9854 8.3250 38.3362 38.2172 37.9665 37.5829 37.0653 8.4057 38.4168 38.2977 38.0468 37.6630 37.1452 8.4864 38.4974 38.3781 38.1272 37.7432 37.2251 $/\partial W(10^{-5})$ -3.2916 -3.2696 -3.2478 -3.2263 -3.2049 -3.2049 -3.2049 -3.2049 -3.2049 -3.2049 -3.2049 -3.2049 <t< td=""></t<>

Result 3. Increases in WMPs decrease the bank interest margin.

29

of 4.60%.

V	(4.50, 200)						
	(4.30, 200)	(4.60, 199)	(4.70, 197)	(4.80, 194)	(4.90, 190)	(5.00, 185)	(5.10, 179)
	ΔRV						
0	0.8394	0.8363	0.8320	0.8263	0.8190	0.8097	0.7979
2	0.8957	0.8924	0.8878	0.8817	0.8740	0.8641	0.8516
4	0.9520	0.9485	0.9436	0.9372	0.9290	0.9186	0.9053
6	1.0083	1.0046	0.9995	0.9927	0.9841	0.9731	0.9591
8	1.0646	1.0607	1.0554	1.0483	1.0392	1.0276	1.0130
0	1.1210	1.1169	1.1113	1.1039	1.0943	1.0822	1.0669
-2	1.1774	1.1732	1.1673	1.1595	1.1495	1.1369	1.1208
	$d\Delta RV / dW$:	total effect (1	(0^{-2})				
0→32	-	2.8280	2.8318	2.8337	2.8324	2.8265	-
2→34	-	2.8296	2.8333	2.8353	2.8339	2.8281	-
4→36	-	2.8312	2.8349	2.8368	2.8355	2.8297	-
6→38	-	2.8328	2.8364	2.8383	2.8370	2.8313	-
8→40	-	2.8343	2.8380	2.8398	2.8386	2.8329	-
0→42	-	2.8359	2.8395	2.8413	2.8401	2.8344	-
Jotes [,] Unle	ess otherwise i	indicated P	= 3.50% R =	-2.50% R -	-4.00% R $-$	-3.00% $\alpha = 0$	$30 K = 1^4$

Result 4. Increases in WMPs increase the bank's efficiency gain from shadow banking involvement.

30

	$(\mathbf{K}_{L}(\mathbf{y}_{0}), L)$						
W	(4.50, 200)	(4.60, 199)	(4.70, 197)	(4.80, 194)	(4.90, 190)	(5.00, 185)	(5.10, 179)
	$P_{S}(10^{-2})$						
0	1.0805	1.0664	1.0476	1.0241	0.9958	0.9623	0.9233
2	1.0830	1.0689	1.0502	1.0267	0.9984	0.9651	0.9262
4	1.0855	1.0714	1.0527	1.0293	1.0011	0.9678	0.9291
6	1.0880	1.0739	1.0553	1.0319	1.0038	0.9706	0.9320
8	1.0904	1.0764	1.0578	1.0345	1.0065	0.9733	0.9348
0	1.0929	1.0789	1.0603	1.0371	1.0091	0.9761	0.9377
2	1.0953	1.0814	1.0628	1.0397	1.0117	0.9788	0.9405
	dP_{s} / dW : to	tal effect (10 ⁻⁵))				
0→32	-	1.2625	1.2868	1.3209	1.3659	1.4230	-
2→34	-	1.2576	1.2817	1.3157	1.3605	1.4173	-
4→36	-	1.2527	1.2767	1.3106	1.3551	1.4116	-
6→38	-	1.2479	1.2718	1.3055	1.3498	1.4060	-
8→40	-	1.2430	1.2668	1.3004	1.3445	1.4004	-
0→42	-	1.2382	1.2619	1.2953	1.3392	1.3948	-
Jotos: IIn	less otherwise	indicated P	= 3.50% P	-2.50% R	-4.00% R	-3.00% $\alpha = 0$	0.30 K = 15

Result 5. Increases in WMPs increase the default risk in the bank's equity returns.

31

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							$(R_{L} (\%), L)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5.10, 179)	(5.00, 185)	(4.90, 190)	(4.80, 194)	(4.70, 197)	(4.60, 199)	(4.50, 200)	θ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.0947	36.7459	37.2625	37.6454	37.8954	38.0140	38.0025	0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.1575	37.7988	38.3073	38.6834	38.9281	39.0424	39.0277	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.2421	38.8730	39.3728	39.7418	39.9807	40.0906	40.0727	.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.3485	39.9683	40.4590	40.8205	41.0534	41.1587	41.1375	.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.4768	41.0848	41.5658	41.9194	42.1461	42.2466	42.2220	.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41.6267	42.2225	42.6933	43.0386	43.2588	43.3543	43.3263	.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$\partial R_L / \partial \theta (10^{-3})$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3.0327	2.5127	2.0477	1.6170	1.2040	-	.10→0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3.2645	2.6885	2.1750	1.7004	1.2458	-	.20→0.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3.5023	2.8683	2.3048	1.7853	1.2883	-	.30→0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3.7463	3.0521	2.4372	1.8716	1.3314	-	.40→0.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3.9967	3.2399	2.5722	1.9594	1.3751	-	.50→0.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$P_{\rm s}$ (10 ⁻³)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.2329	9.6226	9.9575	10.2410	10.4760	10.6640	10.8050	.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.3807	8.7674	9.0993	9.3796	9.6106	9.7935	9.9289	.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.5919	7.9733	8.3004	8.5761	8.8022	8.9798	9.1094	.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.8631	7.2372	7.5581	7.8279	8.0484	8.2204	8.3441	.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.1912	6.5562	6.8694	7.1324	7.3466	7.5126	7.6305	0.50
$dP_s / d\theta$: total effect (10 ⁻⁴) .10 \rightarrow 0.20 - 4.3694 -4.3585 -4.3561 -4.3623 -4.3776 .20 \rightarrow 0.30 - 4.0854 -4.0732 -4.0679 -4.0697 -4.0789	5.5730	5.9274	6.2316	6.4870	6.6943	6.8541	6.9662	.60
$1.10 \rightarrow 0.20$ - -4.3694 -4.3585 -4.3561 -4.3623 -4.3776 $20 \rightarrow 0.30$ - -4.0854 -4.0732 -4.0679 -4.0697 -4.0789						fect (10 ⁻⁴)	$P_s / d\theta$: total eff	d
-4.0854 -4.0732 -4.0679 -4.0697 -4.0789	-	-4.3776	-4.3623	-4.3561	-4.3585	-4.3694	-	0.10→0.20
	-	-4.0789	-4.0697	-4.0679	-4.0732	-4.0854	-	.20→0.30
0.30→0.403.8140 -3.8008 -3.7930 -3.7909 -3.7948	-	-3.7948	-3.7909	-3.7930	-3.8008	-3.8140	-	0.30→0.40
.40→0.503.5552 -3.5411 -3.5313 -3.5258 -3.5251	-	-3.5251	-3.5258	-3.5313	-3.5411	-3.5552	-	.40→0.50
0.50→0.603.3087 -3.2939 -3.2823 -3.2740 -3.2695	-	-3.2695	-3.2740	-3.2823	-3.2939	-3.3087	-	0.50→0.60
Notes: Unless otherwise indicated, $R = 3.50\%$, $R = 2.50\%$, $R = 4.00\%$, $R = 3.00\%$, $\sigma = 0.00\%$	W = 30	$\alpha = 0$	00%, $R = 3$	50%, R = 4	50%, R = 2	licated. $R = 3$	s otherwise inc	Jotes: Unles
$K = 15$, $a = 8.00\%$, $a = 0.30$ and $B = 0.50$. The computed results of $\beta^2 g / \beta P^2 < 0$ meet the	required	0 meet the	of $\partial^2 S / \partial P^2$	puted results	50. The com) and $\beta = 0.5$	$g_{00\%} = 0.30$	K = 15, a - 3

32

Result 6. Increases in the capital injection by the government increase in the bank interest margin, and decrease the default risk in the bank's equity returns

33

Results 7. Higher government capital injection has a significant effect on a bank's survival likelihood in particular during a financial crisis.

346. Conclusions

- 1) Increases in WMPs increase bank loan portfolio at a reduced interest margin. WMPs hurt the bank to decrease its probability of survival.
- 2) Increases in the government's capital injection decrease bank loan portfolio at an increased margin. Government capital injection helps the bank to increase its probability of survival particularly during a severely financial crisis.
- 3) We suggest that shadow credit intermediation should be regulated.
- 4) Our suggestion contributes to the growing literature on explaining the collapse of shadow banking in 2007 to 2008.
- 5) Several results are derived that should be of interest to investors, analysts, and policy makers.

THANKS